I am particularly interested in understanding the mechanisms behind language processing and reasoning, both in language models (interpretability) and in the human mind (cognitive modeling).
Large language models (LLMs) can solve arithmetic word problems with high accuracy, but little is known about how well they generalize to problems that are more complex than the ones on which they have been trained. Empirical investigations of such questions are impeded by two major flaws of current evaluations: (i) much of the evaluation data is contaminated, in the sense that it has already been seen during training, and (ii) benchmark datasets do not capture how problem proofs may be arbitrarily complex in various ways. As a step towards addressing these issues, we present a framework for evaluating LLMs on problems that have arbitrarily complex arithmetic proofs, called MathGAP. MathGAP generates problems that follow fixed proof specifications—along with chain-of-thought reasoning annotations—enabling systematic studies on generalization with respect to arithmetic proof complexity. We apply MathGAP to analyze how in-context learning interacts with generalization to problems that have more complex proofs. We find that among the models tested, most show a significant decrease in performance as proofs get deeper and wider. This effect is more pronounced in complex, nonlinear proof structures, which are challenging even for GPT-4o. Surprisingly, providing in-context examples from the same distribution as the test set is not always beneficial for performance. In particular, zero-shot prompting as well as demonstrating a diverse range of examples that are less complex than the test data sometimes yield similar or higher accuracies.
EMNLP
On the Role of Context in Reading Time Prediction
Andreas Opedal, Eleanor Chodroff, Ryan Cotterell, and Ethan Wilcox
In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Nov 2024
We present a new perspective on how readers integrate context during real-time language comprehension. Our proposals build on surprisal theory, which posits that the processing effort of a linguistic unit (e.g., a word) is an affine function of its in-context information content. We first observe that surprisal is only one out of many potential ways that a contextual predictor can be derived from a language model. Another one is the pointwise mutual information (PMI) between a unit and its context, which turns out to yield the same predictive power as surprisal when controlling for unigram frequency. Moreover, both PMI and surprisal are correlated with frequency. This means that neither PMI nor surprisal contains information about context alone. In response to this, we propose a technique where we project surprisal onto the orthogonal complement of frequency, yielding a new contextual predictor that is uncorrelated with frequency. Our experiments show that the proportion of variance in reading times explained by context is a lot smaller when context is represented by the orthogonalized predictor. From an interpretability standpoint, this indicates that previous studies may have overstated the role that context has in predicting reading times.
ICML
Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners?
Andreas Opedal*, Alessandro Stolfo*, Haruki Shirakami, Ying Jiao, Ryan Cotterell, Bernhard Schölkopf, Abulhair Saparov, and Mrinmaya Sachan
In Forty-first International Conference on Machine Learning, Jul 2024
There is increasing interest in employing large language models (LLMs) as cognitive models. For such purposes, it is central to understand which properties of human cognition are well-modeled by LLMs, and which are not. In this work, we study the biases of LLMs in relation to those known in children when solving arithmetic word problems. Surveying the learning science literature, we posit that the problem-solving process can be split into three distinct steps: text comprehension, solution planning and solution execution. We construct tests for each one in order to understand whether current LLMs display the same cognitive biases as children in these steps. We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features. We find evidence that LLMs, with and without instruction-tuning, exhibit human-like biases in both the text-comprehension and the solution-planning steps of the solving process, but not in the final step, in which the arithmetic expressions are executed to obtain the answer.
EMNLP
An Exploration of Left-Corner Transformations
Andreas Opedal*, Eleftheria Tsipidi*, Tiago Pimentel, Ryan Cotterell, and Tim Vieira
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Dec 2023
The left-corner transformation (Rosenkrantz and Lewis, 1970) is used to remove left recursion from context-free grammars, which is an important step towards making the grammar parsable top-down with simple techniques. This paper generalizes prior left-corner transformations to support semiring-weighted production rules and to provide finer-grained control over which left corners may be moved. Our generalized left-corner transformation (GLCT) arose from unifying the left-corner transformation and speculation transformation (Eisner and Blatz, 2007), originally for logic programming. Our new transformation and speculation define equivalent weighted languages. Yet, their derivation trees are structurally different in an important way: GLCT replaces left recursion with right recursion, and speculation does not. We also provide several technical results regarding the formal relationships between the outputs of GLCT, speculation, and the original grammar. Lastly, we empirically investigate the efficiency of GLCT for left-recursion elimination from grammars of nine languages. Code: https://github.com/rycolab/left-corner
ACL
Efficient Semiring-Weighted Earley Parsing
Andreas Opedal, Ran Zmigrod, Tim Vieira, Ryan Cotterell, and Jason Eisner
In Proceedings of the Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Jul 2023
We present Earley’s (1970) context-free parsing algorithm as a deduction system, incorporating various known and new speed-ups. In particular, our presentation supports a known worst-case runtime improvement from Earley’s (1970) O(N3|G||R|), which is unworkable for the large grammars that arise in natural language processing, to O(N3|G|), which matches the complexity of CKY on a binarized version of the grammar G. Here N is the length of the sentence, |R| is the number of productions in G, and |G| is the total length of those productions. We also provide a version that achieves runtime of O(N3|M|) with |M| ≤ |G| when the grammar is represented compactly as a single finite-state automaton M (this is partly novel). We carefully treat the generalization to semiring-weighted deduction, preprocessing the grammar like Stolcke (1995) to eliminate the possibility of deduction cycles, and further generalize Stolcke’s method to compute the weights of sentence prefixes. We also provide implementation details for efficient execution, ensuring that on a preprocessed grammar, the semiring-weighted versions of our methods have the same asymptotic runtime and space requirements as the unweighted methods, including sub-cubic runtime on some grammars.